

TUBOS PITOT TIPO L TIPO DE NPL (L / RECTO)

SKU: N / A | **Categorías:** Flujo de aire, Sondas, Velocidad del aire |

DESCRIPCIÓN DEL PRODUCTO

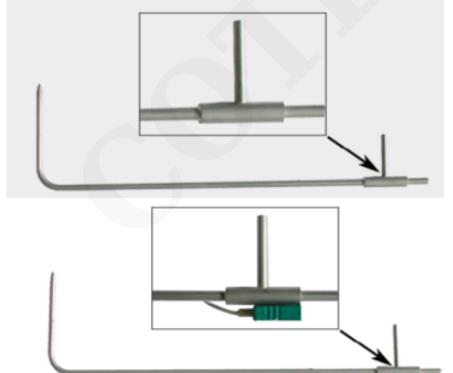
Un tubo pitot es un instrumento de medición de presión utilizado para medir la velocidad del flujo de fluido. Kimo ofrece una amplia gama de tubos tipo Pitot de alta calidad y precisión, según la norma AFNOR NFX 10-112.

Precisión: más del 1%, para una alineación de \pm 10 $^{\circ}$ con el flujo de fluido

Tubos Pitot tipo L: cabeza elipsoidal

Tubos Pitot Tipo L: admisión para presión total y 6 agujeros para presión estática. Cuerpo hecho de acero inoxidable

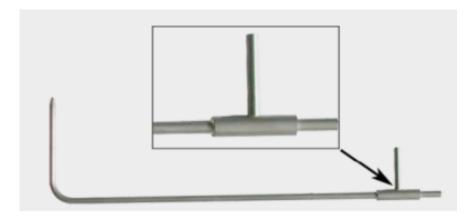
Tubos Pitot tipo L con TCK: cabeza elipsoidal


Tubos Pitot tipo L con TCK: admisión para presión total y 6 agujeros para presión estática

Tubos Pitot tipo L con TCK: sonda termopar K con cable de conexión. Cuerpo hecho de acero inoxidable Sauermann dispone de una amplia gama de tubos de Pitot de alta calidad y precisión, fabricados según la norma AFNOR NF ISO 3966.

Al usarse junto con manómetros de columna o micromanómetros electrónicos pueden medir la presión dinámica de un fluido en movimiento dentro de un conducto, pudiendo así calcular tanto la velocidad, como el caudal.

Los tubos de Pitot son ampliamente utilizados en aplicaciones de HVAC, limpieza por aspiración y transporte pneumático. Sobretodo, se usan en mediciones en aire caliente, aire con partículas en sus pensión o cuando las velocidades son muy elevadas.


Referencias

Tubo de Pitot en L Tubo de Pitot con cabeza elipsoidal. Una toma de presión total y seis tomas de presión estática. Fabricado en acero inoxidable.

Tubo de Pitot en L con termopar K Tubo de Pitot con cabeza elipsoidal.
Una toma de presión total y seis tomas de presión estática.
Sonda termopar K integrada con cable de 1.5 m de longitud.
Fabricado en acero inoxidable

Tubo de Pitot en L

Tubo de Pitot con cabeza elipsoidal. Una toma de presión total y seis tomas de presión estática. Fabricado en acero inoxidable.

recto con termopar K

Permite medir directamente colocando el tubo de Pitot dentro del sistema de Tubo de Pitot difusión de aire. Diámetro y dimensiones: las mismas que el tubo de Pitot en L. Fabricado en acero

inoxidable.

Caracteristicas Tecnicas

Modelo

Coeficiente Material

Rango de medición

Temperatura de trabajo

Presión estática Precisión global del sistema de medición

Normas

AFNOR NF

 1.0015 ± 0.0100 Inox 316 L 3 a 85 m/s

De 0 a 600 °C estándar y hasta 1000 °C opciona

Máxima: 2 bar

Mejor que el 1% para alineación respecto al eje de caudal del fluido de ±10°

NF ISO 3966

Dimensiones (mm)

Modelos

• Tubos de Pitot en L y rectos

Diametro	Referencia Tipo L	Referencia tipo recto	Longitud
Ø3 mm	TPL-03-100	TPL-D-03-100	100 mm
	TPL-03-200	TPL-D-03-200	200 mm
	TPL-03-300	TPL-D-03-300	300 mm
Ø6 mm	TPL-06-300	TPL-D-06-300	300mm
	TPL-06-500	TPL-D-06-500	500 mm
	TPL-06-800	TPL-D-06-800	800 mm

Diametro	Referencia Tipo L	Referencia tipo recto	Longitud
Ø8 mm	TPL-08-1000	TPL-D-08-1000	1000 mm
ווווו סע	TPL-08-1250	TPL-D-08-1250 TPL-D-12-1500	1250 mm
Ø12 mm	TPL-12-1500	TPL-D-12-1500	1500 mm
	TPL-12-2000	TPL-D-12-2000	2000 mm
Ø14 mm	TPL-14-2500	TPL-D-14-3000	2500 mm
	TPL-14-3000		3000 mm

• Tubos de Pitot en L y rectos con termopar

Diametro	Referencia Tipo L	Referencia tipo recto	Longitud
Ø3 mm	TPL-03-100-T	TPL-D-03-100-T	100 mm
	TPL-03-200-T	TPL-D-03-200-T	200 mm
	TPL-03-300-T	TPL-D-03-300-T	300 mm
Ø6 mm	TPL-06-300-T	TPL-D-06-300-T	300mm
	TPL-06-500-T	TPL-D-06-500-T	500 mm
	TPL-06-800-T	TPL-D-06-800-T	800 mm
Ø8 mm	TPL-08-1000-T	TPL-D-08-1000-T	1000 mm
	TPL-08-1250-T	TPL-D-08-1250-T	1250 mm
Ø12 mm	TPL-12-1500-T	TPL-D-12-1500-T	1500 mm
	TPL-12-2000-T	TPL-D-12-2000-T	2000 mm
Ø14 mm	TPL-14-2500-T		2500 mm
	TPL-14-3000-T		3000 mm

Accesorios Opcionales

Accesorio	Referencia	
Prensa estopa en latón niquelado para instalación fija de tubos de Pitot	Consultar	
Brida de fijación de acero inoxidable y hierro colado		
Rácores deslizantes con junta de acero inox o de PTFE		
Cable de extensión para termopar K clase 1	Consultar	
Tapones de obturación en caucho: bolsa de 10 unidades	Consultar	
Tapones: bolsa de 10 unidades	Consultar	
Tubo de silicona negra (4 x 7 mm), metro linea	SN-47-1	
Tubo de silicona transparente (4 x 7mm), metro lineal	SN-47-1	
Tubo transparente (5 x 8 mm), metro lineal	C-58-1	
Maleta de transporte de plástico tipo VTP para tubo de pitot con un tamaño máximo de 110 cm x 20 cm x 4 cm.y/o sonda	VTP / 23370	
Uniones en Y para tubo Ø5 x 8 mm (bolsa de 10 unidades)	JYC	
Uniones en T para tubo Ø5 x 8 mm (bolsa de 10 unidades)	JTC	

Opcional

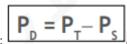
- · Graduación con marcas en rojo en la tija
- Soldadura TIG para usar hasta 1000 °C (excepto tubo de Pitot Ø3 mm)

Principios de uso

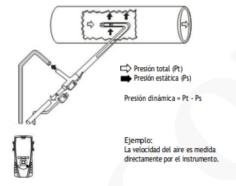
El tubo de Pitot debe ser introducido perpendicularmente en el conducto, en diversos puntos predeterminados (vea la tabla "Ubicación de

puntos de medición").

La cabeza debe mantenerse en paralelo y de cara al flujo.


La presión total (+) capturada por el extremo del tubo de Pitot, se conecta a la toma + del manómetro.

La presión estática (□) capturada por los orificios de la cabeza, se conecta a la toma - del manómetro.


Si se usa el tubo de Pitot con termopar, el cable de conexión de la sonda termopar K se conecta a la entrada para termopar K de manómetro.

Entonces, el instrumento medirá la presión dinámica.

Ésta corresponde a la diferencia entre la presión total y la presión estática:

Aplicacion

- Registro GTC
- Análisis GTC

- Alarmas
- Visualización
- Operación
- Registro GTC
- Análisis GTC
- Monitorización

- Alarmas
- Visualización
- Registro
- Análisis
- Monitorización

Transmisor de baja presión diferencial CP210 y SQR/3

Transmisor de baja presión diferencial con pantalla C310 o CA 310 con SPI 2 - 100, 500, 1000, 10000 y SQR/3

Instrumento multifunción portátil AMI 310

Medición

· Medición de velocidad

$$v = C_1 \sqrt{\frac{2 \Delta P}{\rho}}$$
 $\rho = \frac{P_o}{287.1 (\theta + 273.15)}$

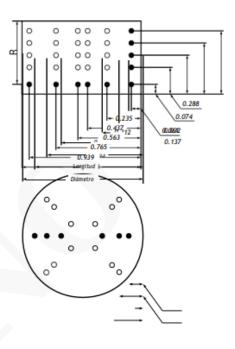
Con:

 C_F : Coeficiente de caudal del dispositivo Tubo de Pitot en L : C_F = 1.0015

θ: Temperatura (°C)

Po: Presión atmosférica (Pa)

· Medición de caudal de aire


Promedio (A) de diversas mediciones de velocidad según Log-Tchebychev (ver esquema en el apartado correspondiente).

Cálculo de caudal de aire

Caudal = Velocidad, x Superficie x 3600 Superficie: superficie del conducto circular o rectangular en m²

Nota: en dispositivos electrónicos, la superficie es ajustable.

Con: Caudal: en m³/h Superficie: en m² V_A: en m/s

Log-Tchebychev en 3 puntos

INFORMACIÓN ADICIONAL